organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(Biphenyl-4-yl)-3-(4-tert-butylphenyl)-1H-pyrazole

Chun-Yang Zheng,* Jing Zheng and Dun-Jia Wang

Hubei Key Laboratory of Bioanalytical Techniques, Department of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China

Correspondence e-mail: zcy800204@163.com

Received 1 June 2007; accepted 11 June 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.004 Å; R factor = 0.060; wR factor = 0.184; data-to-parameter ratio = 14.3.

The molecules of the title compound, C₂₅H₂₄N₂, are connected by intermolecular $N-H \cdots N$ hydrogen bonds to form dimers. The crystal packing is stabilized by van der Waals forces.

Related literature

For related literature, see: Aggarwal et al. (2003); Claramunt et al. (2006); Hayter et al. (2006); Stephen & Swaminathan (2006).

Experimental

Crystal data

$C_{25}H_{24}N_2$
$M_r = 352.46$
Triclinic, P1
a = 6.1119 (6) Å
b = 12.0498 (11) Å
c = 13.9657 (13) Å
$\alpha = 100.158 \ (2)^{\circ}$
$\beta = 95.028 \ (2)^{\circ}$

 $\gamma = 103.283 \ (2)^{\circ}$ $V = 976.47 (16) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 292 (2) K $0.30 \times 0.16 \times 0.10 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	3570 independent reflections
diffractometer	2481 reflections with $I > 2\sigma(I)$
Absorption correction: none 6143 measured reflections	$R_{\rm int} = 0.023$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	H atoms treated by a mixture of
$wR(F^2) = 0.184$	independent and constrained
S = 1.10	refinement
3570 reflections	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
250 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

 $> 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdots N1^{i}$	0.79 (3)	2.25 (3)	2.940 (3)	146 (3)
Symmetry code: (i)	-x, -y+1, -z.			

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2023).

References

- Aggarwal, V. K., Vicente, J., Bonnert, A. & Roger, V. (2003). J. Org. Chem. 68, 5381-5383.
- Bruker (1997). SMART (Version 5.054). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.

Claramunt, R. M., Cornago, P., Torres, V., Pinilla, E., Torres, M. R., Samat, A., Lokshin, V., Magali, V. & Elguero, J. (2006). J. Org. Chem. 71, 6881-6891.

Hayter, M. J., Bray, D. J., Clegg, J. K. & Lindoy, L. F. (2006). Synth. Commun. 36, 707-714.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stephen, T. H. & Swaminathan, R. N. (2006). Org. Lett. 8, 2675-2678.

Acta Cryst. (2007). E63, o3444 [doi:10.1107/S1600536807028565]

5-(Biphenyl-4-yl)-3-(4-tert-butylphenyl)-1H-pyrazole

C.-Y. Zheng, J. Zheng and D.-J. Wang

Comment

Pyrazoles are an important class of heteroaromatic ring systems that find extensive use in the pharmaceutical industry (Aggarwal *et al.*, 2003; Stephen *et al.*, 2006), and have received much more interesting in what concerns the N—H···N hydrogen bonds network in their crystals (Claramunt *et al.*, 2006; Hayter *et al.*, 2006). In the crystal structure of the title compound (I) (Fig. 1), the molecules are connected by N—H···N intermolecular hydrogen bonds to form dimer, with the N···H hydrogen bonds distance of 2.25 (3) Å. The pyrazolyl ring makes dihedral angles of 9.18° and 11.60° with two benzene rings (C5—C10) and (C14—C19), respectively. The crystal packing is stabilized by van der Waals forces.

Experimental

Hydrazine monohydrate (3 ml) in ethol (10 ml) was added dropwise to a refluxing ethanol (30 ml) solution of the appropriate 1-(4-*tert*-butylphenyl)-3-(4-phenylphenyl) propane-1,3-dione (3.56 g). The solution was refluxed for 3 h and removed by evaporation, the residual solid was recrystallized from dilute ethanol solution to give the title compound (I) (yield 2.75 g, 78.1%, m.p. 495 K). Crystals suitable for X-ray diffraction were grown by slow evaporation of the CH₂Cl₂—EtOH (1:2) solutions at room temperature. Spectroscopic analysis, ¹H NMR (CDCl₃, 400 MHz): 1.34(s, 9H, C(CH₃)₃), 6.10(s, 1H, pyrazolyl N—H), 6.89(s, 1H, pyrazolyl C—H), 7.36–7.47(m, 5H, Ar—H), 7.58–7.62(m, 4H, Ar—H), 7.72(d, 2H, 8.4 Hz, Ar—H); analysis, calculated for C₂₅H₂₄N₂: C 85.19, H 6.86%, N 7.95%; found: C 85.25, H 6.85%; N 7.94%.

Refinement

The H atoms were included in the riding model approximation with C—H = 0.93 to 0.97 Å and with $U_{iso}(H) = 1.2$ (1.5 for methyl) $U_{eq}(C)$.

Figures

Fig. 1. View of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Part of the crystal structure of (I). *ORTEP* view of the dimer formed by H-bonding of one independent molecule with its -x, 1 - y, -z symmetry counterpart. The dashed line indicates the intermolecular N—H···N hydrogen bonds.

3-(4-tert-Butylphenyl)-5-(biphenyl-4-yl)-1H-pyrazole

Crystal data	
$C_{25}H_{24}N_2$	Z = 2
$M_r = 352.46$	$F_{000} = 376$
Triclinic, P1	$D_{\rm x} = 1.199 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point: 495 K
<i>a</i> = 6.1119 (6) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 12.0498 (11) Å	Cell parameters from 1534 reflections
c = 13.9657 (13) Å	$\theta = 2.5 - 24.3^{\circ}$
$\alpha = 100.158 \ (2)^{\circ}$	$\mu=0.07~mm^{-1}$
$\beta = 95.028 \ (2)^{\circ}$	T = 292 (2) K
$\gamma = 103.283 \ (2)^{\circ}$	Block, colorless
$V = 976.47 (16) \text{ Å}^3$	$0.30 \times 0.16 \times 0.10 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3570 independent reflections
Radiation source: fine-focus sealed tube	2481 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 25.5^{\circ}$
T = 292(2) K	$\theta_{\min} = 1.5^{\circ}$
φ and ω scans	$h = -7 \rightarrow 7$
Absorption correction: none	$k = -14 \rightarrow 14$
6143 measured reflections	$l = -16 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.060$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.184$	$w = 1/[\sigma^2(F_0^2) + (0.0796P)^2 + 0.2893P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\rm max} = 0.001$
3570 reflections	$\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$
250 parameters	$\Delta \rho_{\rm min} = -0.22 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.7158 (7)	0.3551 (3)	0.5414 (2)	0.0950 (13)
H1A	0.6643	0.4230	0.5656	0.142*
H1B	0.8564	0.3780	0.5158	0.142*
H1C	0.7382	0.3154	0.5939	0.142*
C2	0.6293 (6)	0.1697 (3)	0.4199 (3)	0.0783 (10)
H2A	0.6593	0.1307	0.4720	0.117*
H2B	0.7672	0.1962	0.3934	0.117*
H2C	0.5192	0.1167	0.3692	0.117*
C3	0.3255 (7)	0.2309 (5)	0.5034 (3)	0.123 (2)
H3A	0.2162	0.1751	0.4542	0.184*
H3B	0.2639	0.2955	0.5270	0.184*
H3C	0.3610	0.1950	0.5569	0.184*
C4	0.5378 (5)	0.2736 (2)	0.4597 (2)	0.0536 (7)
C5	0.4971 (4)	0.3378 (2)	0.37709 (18)	0.0449 (6)
C6	0.6779 (5)	0.4085 (3)	0.3445 (2)	0.0563 (8)
H6	0.8247	0.4156	0.3735	0.068*
C7	0.6464 (5)	0.4678 (3)	0.2712 (2)	0.0539 (7)
H7	0.7719	0.5138	0.2517	0.065*
C8	0.4300 (4)	0.4606 (2)	0.22552 (18)	0.0403 (6)
C9	0.2523 (4)	0.3885 (2)	0.25587 (19)	0.0477 (7)
H9	0.1057	0.3797	0.2258	0.057*
C10	0.2846 (4)	0.3289 (2)	0.3294 (2)	0.0506 (7)
H10	0.1590	0.2812	0.3474	0.061*
C11	0.3994 (4)	0.5269 (2)	0.14872 (18)	0.0404 (6)
C12	0.5617 (4)	0.6131 (2)	0.12097 (18)	0.0419 (6)
H12	0.7135	0.6406	0.1478	0.050*
C13	0.4531 (4)	0.6495 (2)	0.04618 (18)	0.0378 (6)
C14	0.5372 (4)	0.7374 (2)	-0.01143 (17)	0.0380 (6)
C15	0.7680 (4)	0.7856 (2)	-0.00671 (18)	0.0421 (6)
H15	0.8705	0.7620	0.0334	0.051*
C16	0.8468 (4)	0.8678 (2)	-0.06062 (19)	0.0438 (6)
H16	1.0024	0.8979	-0.0568	0.053*
C17	0.7011 (4)	0.9072 (2)	-0.12046 (18)	0.0395 (6)

C18	0.4706 (4)	0.8583 (2)	-0.1253 (2)	0.0520(7)
H18	0.3685	0.8821	-0.1655	0.062*
C19	0.3893 (4)	0.7753 (2)	-0.0721 (2)	0.0488 (7)
H19	0.2338	0.7443	-0.0767	0.059*
C20	0.7866 (4)	0.9963 (2)	-0.17797 (18)	0.0420 (6)
C21	0.9742 (5)	0.9931 (3)	-0.2268 (2)	0.0577 (8)
H21	1.0473	0.9341	-0.2229	0.069*
C22	1.0547 (5)	1.0752 (3)	-0.2810 (2)	0.0663 (9)
H22	1.1799	1.0708	-0.3135	0.080*
C23	0.9497 (5)	1.1638 (3)	-0.2871 (2)	0.0647 (9)
H23	1.0037	1.2198	-0.3232	0.078*
C24	0.7637 (6)	1.1687 (3)	-0.2389 (2)	0.0623 (8)
H24	0.6926	1.2285	-0.2426	0.075*
C25	0.6814 (5)	1.0863 (2)	-0.1853 (2)	0.0495 (7)
H25	0.5549	1.0906	-0.1538	0.059*
N1	0.2007 (3)	0.51032 (18)	0.09379 (15)	0.0449 (5)
N2	0.2365 (4)	0.58635 (19)	0.03297 (17)	0.0442 (6)
H2	0.148 (5)	0.580 (2)	-0.014 (2)	0.053*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.147 (4)	0.081 (3)	0.055 (2)	0.033 (2)	-0.021 (2)	0.0170 (19)
C2	0.104 (3)	0.067 (2)	0.075 (2)	0.037 (2)	0.007 (2)	0.0256 (18)
C3	0.086 (3)	0.219 (5)	0.119 (4)	0.064 (3)	0.047 (3)	0.127 (4)
C4	0.0585 (18)	0.0610 (18)	0.0472 (16)	0.0205 (14)	0.0046 (13)	0.0204 (14)
C5	0.0501 (16)	0.0498 (15)	0.0380 (14)	0.0182 (12)	0.0046 (12)	0.0101 (12)
C6	0.0417 (16)	0.074 (2)	0.0564 (17)	0.0158 (14)	-0.0034 (13)	0.0252 (15)
C7	0.0397 (15)	0.0643 (18)	0.0602 (18)	0.0090 (13)	0.0027 (13)	0.0267 (15)
C8	0.0406 (14)	0.0394 (13)	0.0392 (14)	0.0105 (11)	0.0011 (11)	0.0054 (11)
C9	0.0365 (14)	0.0543 (16)	0.0512 (16)	0.0086 (12)	-0.0027 (12)	0.0159 (13)
C10	0.0421 (15)	0.0571 (17)	0.0547 (16)	0.0079 (12)	0.0075 (13)	0.0218 (14)
C11	0.0374 (14)	0.0404 (13)	0.0416 (14)	0.0100 (11)	-0.0011 (11)	0.0060 (11)
C12	0.0352 (13)	0.0421 (14)	0.0447 (15)	0.0063 (11)	-0.0036 (11)	0.0081 (11)
C13	0.0291 (13)	0.0393 (13)	0.0440 (14)	0.0081 (10)	0.0047 (10)	0.0063 (11)
C14	0.0384 (14)	0.0362 (13)	0.0385 (13)	0.0106 (10)	0.0025 (11)	0.0047 (11)
C15	0.0348 (13)	0.0431 (14)	0.0476 (15)	0.0098 (11)	-0.0045 (11)	0.0115 (12)
C16	0.0336 (13)	0.0421 (14)	0.0552 (16)	0.0070 (11)	0.0016 (12)	0.0143 (12)
C17	0.0391 (14)	0.0383 (13)	0.0413 (14)	0.0120 (11)	0.0032 (11)	0.0064 (11)
C18	0.0387 (15)	0.0654 (18)	0.0601 (18)	0.0186 (13)	0.0016 (13)	0.0291 (15)
C19	0.0307 (14)	0.0599 (17)	0.0591 (17)	0.0097 (12)	0.0034 (12)	0.0239 (14)
C20	0.0408 (14)	0.0431 (14)	0.0431 (14)	0.0119 (11)	0.0008 (11)	0.0119 (12)
C21	0.0525 (17)	0.0647 (18)	0.0658 (19)	0.0228 (14)	0.0088 (15)	0.0281 (16)
C22	0.0474 (17)	0.084 (2)	0.079 (2)	0.0188 (16)	0.0214 (16)	0.0391 (19)
C23	0.066 (2)	0.0635 (19)	0.068 (2)	0.0078 (16)	0.0062 (17)	0.0334 (16)
C24	0.077 (2)	0.0521 (17)	0.0641 (19)	0.0243 (15)	0.0033 (17)	0.0216 (15)
C25	0.0498 (16)	0.0502 (16)	0.0527 (16)	0.0184 (13)	0.0076 (13)	0.0132 (13)
N1	0.0370 (12)	0.0502 (13)	0.0485 (13)	0.0094 (10)	-0.0002 (10)	0.0174 (10)

N2	0.0321 (12)	0.0523 (13)	0.0471 (13)	0.0061 (10)	-0.0015 (9)	0.0164 (11)
Geometric param	neters (Å, °)					
C1—C4		1 532 (4)	C12-	-H12	0	9300
C1—H1A		0.9600	C13-	-N2	1.	.346 (3)
C1—H1B		0.9600	C13–	C14	1.	.468 (3)
C1—H1C		0.9600	C14-	-C15	1.	.387 (3)
C2—C4		1.523 (4)	C14	C19	1.	.391 (3)
C2—H2A		0.9600	C15–	C16	1.	.374 (3)
C2—H2B		0.9600	C15–	-H15	0.	.9300
C2—H2C		0.9600	C16–	-C17	1.	.386 (3)
C3—C4		1.505 (4)	C16–	-H16	0.	.9300
С3—НЗА		0.9600	C17–	-C18	1.	.387 (3)
С3—Н3В		0.9600	C17–	-C20	1.	.480 (3)
С3—НЗС		0.9600	C18–	-C19	1.	.378 (4)
C4—C5		1.531 (3)	C18–	-H18	0.	.9300
C5—C10		1.379 (4)	C19–	-H19	0.	.9300
C5—C6		1.394 (4)	C20–	-C21	1.	.389 (4)
С6—С7		1.373 (4)	C20–	-C25	1.	.395 (3)
С6—Н6		0.9300	C21-	-C22	1.	.378 (4)
С7—С8		1.395 (4)	C21-	-H21	0.	.9300
С7—Н7		0.9300	C22–	C23	1.	.377 (4)
С8—С9		1.375 (3)	C22–	-H22	0.	.9300
C8—C11		1.470 (3)	C23–	-C24	1.	.378 (4)
C9—C10		1.378 (3)	C23–	-H23	0.	.9300
С9—Н9		0.9300	C24–	-C25	1.	.378 (4)
C10—H10		0.9300	C24—	-H24	0.	.9300
C11—N1		1.332 (3)	C25–	-H25	0.	.9300
C11—C12		1.396 (3)	N1—	N2	1.	.350 (3)
C12—C13		1.378 (3)	N2—	H2	0.	.79 (3)
C4—C1—H1A		109.5	C13-	-C12-H12	12	26.7
C4—C1—H1B		109.5	C11-	-C12-H12	12	26.7
H1A-C1-H1B		109.5	N2—	C13—C12	10	05.5 (2)
C4—C1—H1C		109.5	N2—	C13—C14	12	23.3 (2)
H1A—C1—H1C		109.5	C12-	-C13-C14	1.	31.2 (2)
H1B—C1—H1C		109.5	C15-	-C14C19	1	17.8 (2)
C4—C2—H2A		109.5	C15-	C14C13	12	20.8 (2)
C4—C2—H2B		109.5	C19–	C14C13	12	21.4 (2)
H2A—C2—H2B		109.5	C16–	-C15-C14	12	20.8 (2)
C4—C2—H2C		109.5	C16–	-C15-H15	1	19.6
H2A—C2—H2C		109.5	C14-	-C15-H15	1	19.6
H2B—C2—H2C		109.5	C15–	-C16-C17	12	21.9 (2)
С4—С3—Н3А		109.5	C15–	-C16-H16	1	19.0
C4—C3—H3B		109.5	C17–	-C16-H16	1	19.0
НЗА—СЗ—НЗВ		109.5	C16–	-C17-C18	1	17.1 (2)
C4—C3—H3C		109.5	C16–	-C17-C20	12	21.7 (2)
НЗА—СЗ—НЗС		109.5	C18–	-C17-C20	12	21.2 (2)
НЗВ—СЗ—НЗС		109.5	C19–	-C18-C17	12	21.6 (2)

C3—C4—C2	108.8 (3)	C19-C18-H18	119.2
C3—C4—C5	112.5 (2)	C17-C18-H18	119.2
C2—C4—C5	109.4 (2)	C18—C19—C14	120.8 (2)
C3—C4—C1	108.4 (3)	С18—С19—Н19	119.6
C2—C4—C1	108.1 (3)	C14—C19—H19	119.6
C5—C4—C1	109.5 (2)	C21—C20—C25	117.6 (2)
C10-C5-C6	115.8 (2)	C21—C20—C17	121.2 (2)
C10C5C4	123.2 (2)	C25—C20—C17	121.2 (2)
C6—C5—C4	120.9 (2)	C22—C21—C20	121.7 (3)
C7—C6—C5	122.2 (3)	C22—C21—H21	119.1
С7—С6—Н6	118.9	C20—C21—H21	119.1
С5—С6—Н6	118.9	C23—C22—C21	119.9 (3)
C6—C7—C8	121.3 (3)	С23—С22—Н22	120.0
С6—С7—Н7	119.4	C21—C22—H22	120.0
С8—С7—Н7	119.4	C22—C23—C24	119.2 (3)
C9—C8—C7	116.4 (2)	C22—C23—H23	120.4
C9—C8—C11	123.1 (2)	$C_{24} - C_{23} - H_{23}$	120.4
C7 - C8 - C11	120.5(2)	$C_{25} - C_{24} - C_{23}$	120.1 121.0(3)
$C_{8} = C_{9} = C_{10}$	120.3(2) 1221(2)	$C_{25} = C_{24} = H_{24}$	119.5
$C_8 = C_9 = H_9$	119.0	$C_{23} = C_{24} = H_{24}$	119.5
C_10 C_2 H_2	119.0	$C_{23} = C_{24} = C_{20}$	120.5 (3)
C_{10} C_{10} C_{5}	112.1 (2)	$C_{24} = C_{25} = C_{20}$	120.5 (5)
$C_{9} = C_{10} = C_{3}$	122.1 (3)	$C_{24} = C_{25} = H_{25}$	119.0
C9-C10-H10	119.0	C11 N1 N2	119.8
C5-C10-H10	119.0	C12 N2 N1	105.7(2)
NI-CII-CI2	109.7 (2)	C13—N2—N1	112.4 (2)
	122.4 (2)	C13—N2—H2	124 (2)
C12-C11-C8	127.9 (2)	N1—N2—H2	121 (2)
C13—C12—C11	106.6 (2)		
C3—C4—C5—C10	-17.5 (4)	C19—C14—C15—C16	-0.2 (4)
C2—C4—C5—C10	103.6 (3)	C13-C14-C15-C16	180.0 (2)
C1—C4—C5—C10	-138.2 (3)	C14-C15-C16-C17	0.9 (4)
C3—C4—C5—C6	163.6 (3)	C15-C16-C17-C18	-1.2 (4)
C2—C4—C5—C6	-75.3 (3)	C15-C16-C17-C20	179.6 (2)
C1—C4—C5—C6	42.9 (4)	C16-C17-C18-C19	0.9 (4)
C10-C5-C6-C7	1.5 (4)	C20-C17-C18-C19	-180.0 (3)
C4—C5—C6—C7	-179.5 (3)	C17—C18—C19—C14	-0.2 (4)
C5—C6—C7—C8	0.2 (5)	C15-C14-C19-C18	-0.2 (4)
C6—C7—C8—C9	-1.8 (4)	C13-C14-C19-C18	179.7 (2)
C6—C7—C8—C11	178.6 (3)	C16—C17—C20—C21	41.9 (4)
C7—C8—C9—C10	1.8 (4)	C18—C17—C20—C21	-137.3 (3)
C11—C8—C9—C10	-178.7 (2)	C16—C17—C20—C25	-138.3 (3)
C8—C9—C10—C5	0.0 (4)	C18—C17—C20—C25	42.5 (4)
C6—C5—C10—C9	-1.6 (4)	C25—C20—C21—C22	-0.2 (4)
C4-C5-C10-C9	179 4 (3)	C17—C20—C21—C22	179 6 (3)
C9-C8-C11-N1	-9.2 (4)	C_{20} C_{21} C_{22} C_{23}	0.5 (5)
C7-C8-C11-N1	170 4 (2)	$C_{21} = C_{22} = C_{23} = C_{24}$	-0.4(5)
C9-C8-C11-C12	171.1 (3)	C^{22} C^{23} C^{24} C^{25}	-0.2(5)
C7 - C8 - C11 - C12	-94(4)	C_{23} C_{24} C_{25} C_{23} C_{24} C_{25} C_{20}	0.2(3)
$C_1 - C_0 - C_{11} - C_{12}$	(+)	$C_{23} - C_{24} - C_{23} - C_{20}$	-0.4(4)
NI-UII-UI2-UI3	0.2 (3)	$U_{21} - U_{20} - U_{23} - U_{24}$	-0.4 (4)

C8—C11—C12—C13	-180.0 (2)		C17-	-C20-C25-C24		179.8	(2)
C11—C12—C13—N2	0.4 (3)		C12-	-C11-N1-N2		-0.8 (3)
C11-C12-C13-C14	-179.9 (2)		C8—	C11—N1—N2		179.4	(2)
N2-C13-C14-C15	-168.9 (2)		C12-C13-N2-N1			-1.0 (3)	
C12-C13-C14-C15	11.4 (4)		C14—C13—N2—N1			179.3 (2)	
N2-C13-C14-C19	11.3 (4)		C11—N1—N2—C13			1.2 (3)	
C12—C13—C14—C19	-168.4 (3)						
Hydrogen-bond geometry (Å, °)							
D—H…A		<i>D</i> —Н		$H \cdots A$	$D \cdots A$		D—H··· A
N2—H2···N1 ⁱ		0.79 (3)		2.25 (3)	2.940 (3)		146 (3)
Symmetry codes: (i) $-x$, $-y+1$, $-z$.							

Fig. 1

Fig. 2